Respuesta :
[tex]\bf \qquad \qquad \textit{Amortized Loan Value}
\\\\
pymt=P\left[ \cfrac{\frac{r}{n}}{1-\left( 1+ \frac{r}{n}\right)^{-nt}} \right][/tex]
[tex]\bf \qquad \qquad \textit{first investment plan} \\\\\\ \qquad \begin{cases} P= \begin{array}{llll} \textit{original amount deposited}\\ \end{array}\to & \begin{array}{llll} 28000 \end{array}\\ pymt=\textit{periodic payments}\\ r=rate\to 5.8\%\to \frac{5.8}{100}\to &0.058\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, meaning} \end{array}\to &1\\ t=years\to &4 \end{cases}\\\\ [/tex]
[tex]\bf -----------------------------\\\\ \left. \qquad \qquad \right. \textit{2nd investment plan} \\\\\\ \begin{cases} P= \begin{array}{llll} \textit{original amount deposited}\\ \end{array}\to & \begin{array}{llll} 28000 \end{array}\\ pymt=\textit{periodic payments}\\ r=rate\to 7.083\%\to \frac{7.083}{100}\to &0.07083\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, meaning again} \end{array}\to &1\\ t=years\to &3 \end{cases}[/tex]
see which one yields a bigger "pymt" figure
[tex]\bf \qquad \qquad \textit{first investment plan} \\\\\\ \qquad \begin{cases} P= \begin{array}{llll} \textit{original amount deposited}\\ \end{array}\to & \begin{array}{llll} 28000 \end{array}\\ pymt=\textit{periodic payments}\\ r=rate\to 5.8\%\to \frac{5.8}{100}\to &0.058\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, meaning} \end{array}\to &1\\ t=years\to &4 \end{cases}\\\\ [/tex]
[tex]\bf -----------------------------\\\\ \left. \qquad \qquad \right. \textit{2nd investment plan} \\\\\\ \begin{cases} P= \begin{array}{llll} \textit{original amount deposited}\\ \end{array}\to & \begin{array}{llll} 28000 \end{array}\\ pymt=\textit{periodic payments}\\ r=rate\to 7.083\%\to \frac{7.083}{100}\to &0.07083\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, meaning again} \end{array}\to &1\\ t=years\to &3 \end{cases}[/tex]
see which one yields a bigger "pymt" figure