Answer:
Approximately [tex]39.6\; {\rm m\cdot s^{-1}}[/tex] (assuming that [tex]g = 9.81\; {\rm m\cdot s^{-2}}[/tex].)
Explanation:
Under the assumptions, vertical acceleration of the vehicle during the ride would be equal to the gravitational field strength: [tex]a = g = 9.81\; {\rm m\cdot s^{-2}}[/tex].
Apply the following SUVAT equation to find the velocity of the vehicle at the bottom of the drop:
[tex]v^{2} - u^{2} = 2\, a\, x[/tex],
Where:
Rearrange this equation to find [tex]v[/tex]:
[tex]\begin{aligned}v &= \sqrt{u^{2} + 2\, a\, x} \\ &\approx \sqrt{0^{2} + 2\, (9.81)\, (79.8)} \; {\rm m\cdot s^{-1}} \\ &\approx 39.6\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
Hence, the speed of this vehicle at the bottom of the drop would be approximately [tex]39.6\; {\rm m\cdot s^{-1}}[/tex].