Answer:
for k = 0, 1, 2
[tex]\sqrt[3]{-2i}[/tex] = Â [tex]\sqrt[3]{2}[/tex] Â ( cos(90 Â + k*120) Â + i sin (90 + k*120) )
Choice: C. Â for k = 1
[tex]\sqrt[3]{-2i}[/tex] = Â [tex]\sqrt[3]{2}[/tex] Â ( cos(210) Â + i sin (210) )
Step-by-step explanation:
Rewrite  -2i  as  2*( 0 - i) =  2 * (sin π +  i*cos π)
(-2i)^(1/3) = Â [2 (cos 3Ï€/2 Â + i sin 3Ï€/2) ]^(1/3)
(-2i)^(1/3) = Â 2^(1/3) Â (cos 3Ï€/2 Â + i sin 3Ï€/2)^(1/3)
(-2i)^(1/3) =  2^(1/3)  ( cos ((3π/2 + 2kπ)/3  )  + i sin ((3π/2 + 2kπ)/3 ) )
for k = 0, 1, 2
[tex]\sqrt[3]{-2i}[/tex] =  [tex]\sqrt[3]{2}[/tex]  ( cos (π/2  + 2kπ/3)  + i sin (π/2 + 2kπ/3) )
for k = 0, 1, 2
[tex]\sqrt[3]{-2i}[/tex] = Â [tex]\sqrt[3]{2}[/tex] Â ( cos(90 Â + k*120) Â + i sin (90 + k*120) )
for k = 0, 1, 2
so we can let k = 0 Â and get:
[tex]\sqrt[3]{-2i}[/tex] = Â [tex]\sqrt[3]{2}[/tex] Â ( cos(90) Â + i sin (90) )
for k = 1
[tex]\sqrt[3]{-2i}[/tex] = Â [tex]\sqrt[3]{2}[/tex] Â ( cos(90 Â + 120) Â + i sin (90 + 120) )
[tex]\sqrt[3]{-2i}[/tex] = Â [tex]\sqrt[3]{2}[/tex] Â ( cos(210) Â + i sin (210) )