Respuesta :

Answer:

From the given ratio for [tex]tan\theta=\frac{4}{5}[/tex] we found the values are

[tex]sin\theta=4[/tex]  

[tex]cos\theta=5[/tex]

[tex]csc\theta=\frac{1}{4}[/tex]

[tex]sec\theta=\frac{1}{5}[/tex]

[tex]cot\theta=\frac{5}{4}}[/tex]

Step-by-step explanation:

Given the ratio for [tex]tan\theta=\frac{4}{5}[/tex]

We have to find the rest of trignometric functions:

[tex]tan\theta=\frac{4}{5}\hfill (1)[/tex]

[tex]tan\theta[/tex] can be written as

[tex]tan\theta=\frac{sin\theta}{cos\theta}\hfill (2)[/tex]

Comparing equations (1) and (2) we get

[tex]tan\theta=\frac{sin\theta}{cos\theta}=\frac{4}{5}[/tex]

[tex]\frac{sin\theta}{cos\theta}=\frac{4}{5}[/tex]

Equating the coressponding numerator and denominator respectively

Therefore [tex]sin\theta=4[/tex] and [tex]cos\theta=5[/tex]

We can find [tex]csc\theta[/tex]

[tex]csc\theta=\frac{1}{sin\theta}[/tex]

[tex]=\frac{1}{4}[/tex] (since [tex]sin\theta=4[/tex])

[tex]csc\theta=\frac{1}{4}[/tex]

We can find [tex]sec\theta[/tex]

[tex]sec\theta=\frac{1}{cos\theta}[/tex]

[tex]=\frac{1}{5}[/tex] (since [tex]cos\theta=5[/tex])

[tex]sec\theta=\frac{1}{5}[/tex]

To find [tex]cot\theta[/tex]:

[tex]cot\theta=\frac{1}{tan\theta}[/tex]

[tex]=\frac{1}{\frac{4}{5}}[/tex]

[tex]=1\times \frac{5}{4}[/tex]

[tex]=\frac{5}{4}}[/tex]

[tex]cot\theta=\frac{5}{4}}[/tex]